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Calculation of Thermally-Induced Displacements  
in Spherically Domed Ion Engine Grids 

 
George C. Soulas 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

An analytical method for predicting the thermally-induced normal and tangential displacements of spherically 
domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be 
thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the 
surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical 
dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the 
perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results 
are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical 
model produces results that closely match the finite element model results. The simplified equation for the normal 
displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated 
shells, the analytical solution and simplified equation produce accurate results for materials with low thermal 
expansion coefficients.  

Nomenclature 

an Non-homogeneous solution variable 
An Non-homogeneous solution variable 
AT0, AT1, AT2 Constants for quadratic temperature equation 
Bn Non-homogeneous solution variable 
C Boundary condition constant 
Cv Displacement boundary condition constant 
E Elastic modulus 
f Homogeneous solution for displacement general solution 
h Shell thickness 
hdome Spherical dome height 
k Defined variable 
Mθ Circumferential bending moment per unit length 
Mφ Meridional bending moment per unit length 
n Series summation variable 
N Defined variable 
Nθ Circumferential longitudinal force per unit length 
Nφ Meridional longitudinal force per unit length 

nP  Legendre function 
)1(

nP  Legendre, or spherical, function of the first kind  
q Shear function general solution 
q  Shear function non-homogeneous solution 
q  Shear function homogeneous solution 
Qφ Shear force per unit length 
R Spherical shell radius of curvature 
r Chord radial location 
ro Spherical shell chord radius 
T Shell change in temperature distribution 
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v Shell tangential displacement 
w Shell normal displacement 
wo Displacement w at φ = 0  
z Radial direction in a spherical coordinate system 
α Thermal expansion coefficient 
Δ Non-homogeneous solution variable 
Δro Spherical shell change in chord radius 
εθθ Circumferential strain 
εφφ Meridional strain 

0
θθε  Circumferential middle surface strain 
0
ϕϕε  Meridional middle surface strain 

θ Circumferential direction 
κθ Circumferential strain equation variable 
κφ Meridional strain equation variable 
ν Poisson’s ratio 
σθθ Circumferential (or hoop) stress 
σφz Shear stress 
σφφ Meridional stress 
τ Shell temperature distribution in meridional direction  
τo Shell temperature distribution through thickness 
φ Meridional direction 
φe Meridional spherical shell edge 
χ Displacement function general solution 
χ  Displacement function non-homogeneous solution 
χ  Displacement function homogeneous solution 
ψ Boundary condition constant 

I.  Introduction 

A key ion engine component is the acceleration system, or ion optics assembly. The ion optics assembly is 
typically made up of two perforated electrodes, labeled the screen and accelerator grids. Critical dimensions that 
directly affect ion optics’ performance and service life are the gap between the grids and the grid-to-grid aperture 
alignment. 

During ion thruster operation, the grids are heated by power deposition from the plasma and conducted and 
radiated heat from other thruster surfaces. This heating typically results in a temperature distribution along the grid 
surface that is higher at the center of the beam extraction area and cooler at the beam extraction edge. To preclude 
buckling and control the thermal expansion of large area grids, the thruster grids are typically manufactured with a 
spherically domed shape. This shape significantly reduces compressive stresses that can cause buckling and causes 
both grids to thermally expand in the same direction to provide some control over the grid gap.  

However, each grid is also differentially heated during ion thruster operation. The resulting uneven 
displacement of each grid during thruster operation causes the gap between the grids and the radial grid-to-grid 
aperture alignment to change from their preset values. Knowledge of the grid gap and aperture alignment during 
thruster operation is essential in properly assessing ion optics’ performance and service life.  

Direct measurements of grid gaps during thruster operation have been made, however, these measurements are 
difficult to do and consume considerable resources (refs. 1 to 5). The only known measurements of grid-to-grid 
aperture alignment during thruster operation are those of reference 3. Radial grid-to-grid aperture misalignment 
during thruster operation has typically been inferred by non-axisymmetric erosion of the accelerator apertures 
resulting from extended thruster operation. Accurately predicting the displacements of each grid both normal and 
tangential to the dome surface during thruster operation would be of value for predicting the grid gap and grid-to-
grid aperture alignment, respectively. This is because grid gap and grid-to-grid aperture alignment changes at a 
particular location are merely the difference of the normal and tangential displacements, respectively, of each grid. 
Such a predictive technique would not only be of value for existing ion thruster designs, but also for future designs.  



NASA/TM—2006-214046 3

Predicting these displacements requires knowledge of two critical elements. The first element is the temperature 
distribution across each grid. The second element is the resulting, thermally-induced displacements of the grids from 
these temperature distributions. The latter element is the subject of this paper. 

Predicting grid displacement during thruster operation from a given temperature distribution has been the topic 
of several past investigations, only a few of which are included in the reference section of this paper (refs. 6 to 8). 
All of these studies, however, relied on finite element structural analysis computer codes, or finite element models, 
to determine the thermally-induced displacements of the grids. While such a technique can be effective in accurately 
determining these displacements, it lends no direct insight as to how grid design parameters affect grid 
displacements. Although these models can be used indirectly in modeling experiments where design parameters can 
be varied to determine their impact on displacements, such an approach is inefficient due to the broad parameter 
space. A more useful predictive tool would be an analytical method. 

This paper describes an analytical method for calculating the thermally-induced displacements of spherically 
domed grids. Displacements determined include those both normal and tangential to the grid surface for grid gap 
and grid-to-grid aperture alignment determinations, respectively. The theory of thin-walled spherical shells under 
thermal loads and the resulting stresses and moments are reviewed. The appropriate boundary conditions are applied 
for the determination of constants. Afterwards, normal and tangential displacements are derived. A simplified 
equation for the normal displacement at the center of the spherical dome is also derived. The process for including 
the effects of shell perforation is presented. Finally, the resulting analytical model is compared to the results from a 
finite element model.  

II.  Background—Thermal Stresses in a Thin-walled Spherical Shell 

The theory of thin-walled shells of revolution under thermal loads varying both through the thickness and along 
surface was originally reported by Nowacki (ref. 9), and later by Johns (ref. 10). A summary of the theory and the 
analytical solutions for thermal stresses in thin-walled shells from reference 9 is presented below. It will serve as  
a background necessary for determining the thermally-induced displacements of a spherical dome and provide 
equations for determining thermally-induced stresses and moments. The notation used in reference 9 will be  
adopted here. 

In the following analysis, only spherical shells of uniform thickness under an axisymmetric thermal loading 
(i.e., constant along the circumference) will be considered. It is assumed that the wall thickness is very small in 
comparison with the radius of curvature and that the normal stress through the wall thickness is zero, both of which 
are commonly assumed in thin shell theory (ref. 11). The change in curvature resulting from the thermally-induced 
displacements is assumed to be negligibly small and that buckling does not occur. Furthermore, it is assumed that all 
deformation is fully elastic and obeys Hooke’s law. Finally, it is assumed that the material is homogeneous, so that 
material properties are isotropic. 

Figure 1 defines the resultant forces and moments per unit length on an element of a spherical shell under an 
axisymmetric load. Because the shell thermal loading is assumed to be axisymmetric, the change in temperature is 
only a function of φ and z. The area of the element in figure 1 is, therefore, R2·dφ·dθ. The radius of curvature, R, is 
to the middle surface. The resultant forces and moments per unit length are defined below as 

 

 
∫

−
⋅=

h/2

h/2
dzφφσφN

     
∫

−
⋅θθ=θ

h/2

h/2
dzσN

     
∫

−
⋅⋅−=

h/2

h/2
dzφφσzφM

     
∫

−
⋅θθ⋅−=θ

h/2

h/2
dzσzM

  
 

 
∫

−
⋅−=

h/2

h/2
dzφzσφQ

  (1) 
 
The equilibrium equations for this spherical shell element are given by 
 

 
( ) ( ) 0)sin(QcosNsinφN =ϕ⋅−ϕ⋅−⎥⎦

⎤
⎢⎣
⎡ ϕ⋅

ϕ∂
∂

ϕθ
 (2) 

 

 ( ) ( ) 0)sin(NsinNsinφQ =ϕ⋅+ϕ⋅+⎥⎦
⎤

⎢⎣
⎡ ϕ⋅

ϕ∂
∂

θϕ  (3) 
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 ( )[ ] ( ) 0)sin(RQcosMsinφM =ϕ⋅⋅−ϕ⋅−ϕ⋅
ϕ∂
∂

ϕθ . (4) 

 
A more complete derivation of these equilibrium equations can be found in references 11 and 12. 

As shown in figure 1, the displacement v is in the tangential direction of increasing φ and the displacement w is 
normal to the surface (i.e., it coincides with the z axis, or radial axis, in a spherical coordinate system). The 
deformations εφφ and εθθ are given by 
 
 ϕϕϕϕϕ κ⋅+ε=ε z0  θθθθθ κ⋅+ε=ε z0  (5) 
 
where 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ϕ
⋅=εϕϕ w

d
dv

R
10  [ ]wv

R
+ϕ⋅⋅=εθθ )cot(10  

ϕ
χ

⋅=κϕ d
d

R
1  

R
)cot(ϕ⋅χ

=κθ  (6) 

 
and 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

−⋅=χ
d
dwv

R
1 .   (7) 

 
Here, 0

ϕϕε  and 0
θθε are the deformations of the spherical shell’s middle surface. 

The aforementioned deformations and stresses are related by Hooke’s law. The deformations as a function of 
stresses σφφ and σθθ are given by 

 

 ( ) T
E
1

⋅α+σ⋅ν−σ⋅=ε θθϕϕϕϕ  ( ) T
E
1

⋅α+σ⋅ν−σ⋅=ε ϕϕθθθθ .  (8) 

 
Here, T is defined as the change in temperature and is a function of φ and z. To simplify this analysis, it will be 
assumed the change in temperature is linear with thickness so that 
 
 )(z)()z,(T o ϕτ⋅+ϕτ=ϕ .  (9) 
 
Throughout the remainder of this paper, the change in temperature will be referred to as the temperature. 

The deformation equations of eq. (8) can be solved for the stresses. These stresses can then be used to solve for 
the resultant forces and moments per unit length in eq. (1). Equation (7) can be recast with eqs. (5) and (6) to yield χ 
as a function of the middle surface deformations. By manipulating these equations further and introducing a new 
variable defined below 
 

 
2h

RQ4q ⋅⋅= ϕ ,  (10) 

 
the following two second order differential equations can be derived for a spherical shell of constant thickness under 
an axisymmetric thermal load 
 

 
ϕ
τ

⋅⋅α⋅ν+=
⋅
⋅

+χ⋅ν−χ⋅ϕ−
ϕ
χ

⋅ϕ+
ϕ

χ
d
dR)1(

N4
Rh)(cot

d
d)cot(

d
d 2

2
2

2
  (11) 

 

 
ϕ
τ

⋅α⋅
⋅⋅

=χ⋅
⋅⋅

−⋅ν+⋅ϕ−
ϕ

⋅ϕ+
ϕ d

d
h

RE4
h

RE4qq)(cot
d
dq)cot(

d
qd o2
2

2
. (12) 
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Here, N is defined as 
 

 
)1(12 2

3

ν−⋅

⋅
=

hEN . (13) 

 
The general solutions for χ and q are the sum of their non-homogeneous and homogeneous solutions to the second 
order differential equations of eqs. (11) and (12) 
 
 χ+χ=χ  qqq += .  (14) 
 

The non-homogeneous solutions will be solved first. To simplify the analysis, it will be assumed that the change 
in temperature through the thickness as a function of φ is constant. That is, although the temperature can vary 
through the thickness, the temperature variation as a function of thickness is the same everywhere on the spherical 
dome. As a result, dτ/dφ = 0, so that the right hand side of eq. (11) is zero. To solve these differential equations, the 
first derivative of the function τo is expanded in a series with respect to the Legendre, or spherical, functions of the 
first kind, [ ])cos(P )1(

n ϕ  (ref. 13), so that 
 

 [ ]∑
∞

=

ϕ⋅=
ϕ
τ

1n

)1(
nn

o )cos(Pa
d
d

.  (15) 

 
The non-homogeneous solutions for eqs. (11) and (12) are, therefore 
 

 [ ]∑
∞

=

ϕ⋅⋅⋅α⋅=χ
1n

)1(
nn )cos(PA

h
R2  (16) 

 

 [ ]∑
∞

=

ϕ⋅⋅⋅α⋅=
1n

)1(
nn )cos(PB

h
R2q  (17) 

 
where 
 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧ ⋅⋅ν−⋅

Δ
ν+

−= nn a
h
R161A  (18) 

 

 ( )[ ]{ }nn a1nn1E2B ⋅+⋅−ν−
Δ
⋅

=   (19) 

 

 ( )[ ] ( )
2

222

h
R1121nn1 ⎟
⎠
⎞

⎜
⎝
⎛⋅ν−⋅+ν−+⋅−=Δ   (20) 

 

 ( )
( ) [ ]∫

π

ϕ⋅ϕ⋅ϕ⋅
ϕ
τ

⋅
+
−

⋅
+⋅

=
0

)1(
n

o
n d)cos(P)sin(

d
d

!1n
!1n

2
1n2a .   (21) 

 
The homogeneous solutions of eqs. (11) and (12) are slowly convergent hypergeometric series (refs. 9, 11,  

and 12). For very thin shells where φe is not small, however, boundary loadings only affect stresses in the vicinity of 
the edge of the spherical dome (refs. 9 and 11). These stresses decrease rapidly toward the center of the shell. 
Therefore, it is possible to neglect χ and dχ/dφ when compared to d2χ/dφ2 in eq. (11), and q and dq/dφ when 
compared to d2q/dφ2 in eq. (12) (refs. 9, 11, and 12). With these assumptions, the homogeneous solutions to  
eqs. (11) and (12) for a closed spherical shell become 
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 ( ) ( )[ ]ψ+ϕ−ϕ⋅⋅⋅=χ ϕ−ϕ⋅−
e

k kcoseC e   (22) 
 

 ( ) ( )[ ]ψ+ϕ−ϕ⋅⋅⋅
⋅

⋅⋅⋅
−=

ϕ

χ
⋅

⋅

⋅
−= ϕ−ϕ⋅−

e
k

2

2

2

2

2 ksine
Rh

kCN8
d
d

Rh
N4q e   (23) 

 
where 
 

 
4/12

2

h
R)1(3k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅ν−⋅= .  (24) 

 
The constants C and ψ are determined by applying an appropriate set of boundary conditions, which will be 
discussed later. 

With the general solutions for q and χ above, the stresses per unit length can be solved. The solution for Qφ is 
easily obtained from eq. (10). From the equilibrium eqs. (2) and (3), Nφ and Nθ can be solved with Qφ 

 

 )cot(q
R4

h)cot(QφN
2

ϕ⋅⋅
⋅

−=ϕ⋅−= ϕ   (25) 

 

 
ϕ

⋅
⋅

−=
ϕ

−=θ
ϕ

d
dq

R4
h

d
dQ

N
2

  (26) 

 
Note that dq/dφ is merely 
 

 
ϕ

+
ϕ

=
ϕ d

qd
d

qd
d
dq  (27) 

 
where 
 

 ( ) [ ] ( ) [ ]{ }∑
∞

=

ϕ⋅ϕ−ϕ⋅+⋅⋅⋅⋅α⋅=
ϕ 1n

)1(
nnn )cos(Pcot)cos(P1nnB

h
R2

d
qd  (28) 

 
and 
 

 ( ) ( )[ ] ( )[ ]{ }ψ+ϕ−ϕ⋅−ψ+ϕ−ϕ⋅⋅⋅
⋅

⋅⋅⋅
−=

ϕ
ϕ−ϕ⋅−

ee
k

2

3
kcosksine

hR
kCN8

d
qd e .  (29) 

 
The moments are given by 
 

( )[ ] ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
τ⋅α⋅ν+⋅−χ⋅ϕ⋅ν+

ϕ
χ

⋅−=τ⋅α⋅ν+−κ⋅ν+κ⋅−= θϕ 1Rcot
d
d

R
N1NφM   (30) 

 

( )[ ] ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
τ⋅α⋅ν+⋅−

ϕ
χ

⋅ν+χ⋅ϕ⋅−=τ⋅α⋅ν+−κ⋅ν+κ⋅−=θ ϕθ 1R
d
dcot

R
N1NM .  (31) 

 
Further note that dχ/dφ is merely 
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ϕ
χ

+
ϕ
χ

=
ϕ
χ

d
d

d
d

d
d  (32) 

 
where 
 

 ( ) [ ] ( ) [ ]{ }∑
∞

=

ϕ⋅ϕ−ϕ⋅+⋅⋅⋅⋅α⋅=
ϕ
χ

1n

)1(
nnn )cos(Pcot)cos(P1nnA

h
R2

d
d  (33) 

 
and 
 

 ( ) ( )[ ] ( )[ ]{ }ψ+ϕ−ϕ⋅+ψ+ϕ−ϕ⋅⋅⋅⋅=
ϕ
χ ϕ−ϕ⋅−

ee
k ksinkcosekC

d
d e . (34) 

 
The average stresses σφφ, σθθ, and σφz given in eq. (1) are merely their respective forces per unit length divided by 
the thickness, h. 

III.  Analytical Model of Displacements of a Spherical Shell with an Expanding Fixed Edge 

This section presents how the constants C and ψ for the above analysis are determined by applying an 
appropriate set of boundary conditions. Although Nowacki determined analytical solutions for the above stresses, he 
did not solve for the tangential and normal displacements (i.e., v and w, respectively). He did, however, provide a 
process for solving the displacements (ref. 9). The following presents this process and the resulting analytical 
solutions. Afterwards, a simplified analytical solution for the displacement at the center of the dome, wo, is 
provided. Finally, the process for determining stresses and displacements using the analytical solutions of this study 
are presented. 
 
A.  Boundary Condition and Determination of Constants 

The homogeneous equations for χ and q can now be solved for a specific set of boundary conditions. While 
these equations can be solved for any number of boundary conditions, a fixed (or clamped) edge support was used 
for this analysis. With a fixed edge support, spherical dome edge rotation and displacements in the direction of the 
chord radius at the edge of the spherical dome are prevented. To make the analysis results more applicable, it was 
further assumed that the edge support at ro could be thermally expanded by Δro as shown in figure 2. During this 
expansion, the radius of curvature at the edge support also expands accordingly. Such an assumption is appropriate 
for spherically domed grids that have a fixed dome support that can expand from thermal heating. While such an 
assumption appropriately accounts for the thermal expansion of the grid mounting structure, this edge support is 
assumed to be infinitely rigid, which is not typically the case with a true ion optics mounting system. Unfortunately, 
mounting system designs vary, and the specific mounting system design will affect the boundary conditions that 
should be used in this analysis. The results of this analysis will, therefore, be specific to the selected boundary 
conditions above. However, the following analysis can easily be repeated for a new set of boundary conditions.  

Regarding the temperature, a further assumption made here is that the temperature is constant throughout the 
thickness of the grid. Given that most grid thicknesses are small relative to the radius of curvature and that the 
material is perforated, the assumption is reasonable. So, the temperature distribution is given by 

 
 )()(T)z,(T o ϕτ=ϕ≈ϕ .  (35) 

 
It will be shown that the boundary conditions for thermally expanding fixed edge support are χ(φe) = 0 and 

εθθ(φe) = Δro/ro. With the above boundary condition, the constants C and ψ in the homogeneous solutions of eqs. (22) 
and (23) can be determined. At φ = φe, it can be shown that 
 
 )cos(r)(v eoe ϕ⋅Δ=ϕ   (36) 

 
 )sin(r)(w eoe ϕ⋅Δ=ϕ   (37) 
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 )cos(r
d

)(dw
eo

e ϕ⋅Δ=
ϕ
ϕ

  (38) 

 
Using the results of eqs. (36) and (38) in eq. (7), it is found that χ(φe) = 0. When the non-homogeneous and 
homogeneous solutions of eqs. (16) and (22), respectively, are used to solve χ at φ = φe, the constant C is found to be 
 

 
)cos(
)(

C e
ψ
φχ

−= . (39) 

 
Because the edge support can expand by Δro, the strain at the edge support is, by definition, εθθ(φe) = Δro/ro. 

Equations (1), (25), and (26) can be used in eq. (8) of εθθ to yield 
 

 ( ) ooe
o

o )cot(q
d
dq

R4E
h

h
N

h
N

E
1

r
r

τ⋅α+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ⋅ν⋅−

ϕ
⋅

⋅⋅
−=τ⋅α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅ν−⋅=ϕε=

Δ ϕθ
θθ .  (40) 

 
The non-homogeneous and homogeneous solutions of eqs. (17) and (23), respectively, are used to solve for q and 
this, along with eq. (36) for v(φe), can be used in eq. (40) above. The constant ψ is, thus, found to be 
 

[ ]
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−ϕτ⋅α⋅⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ⋅ν⋅ϕ−

ϕ
ϕ

⋅
⋅

−⋅

=ψ
)()cot(kkN2

)(kN2
r
r

)(Eh)cot()(q
d

)(qd
R4

hR

arctan
ee

2

e
3

o

o
eoee

e
2

2

.  (41) 

 
Note that the constants C and ψ above are for a fixed edge support that can expand by Δro. To obtain a solution for a 
fixed edge with no expansion, the edge expansion term Δro is merely set to zero.  

 
B.  Derivation of Tangential and Normal Displacements 

With the aforementioned equations for forces per unit length solved, the displacement of the spherical dome in 
the v and w directions, shown in figure 1, can now be solved. The middle surface strain equations for 0

ϕϕε  and 
0
θθε of eq. (6) can be combined to yield 

 

 )(R)cot(v
d
dv 00

θθϕϕ ε−ε⋅=ϕ⋅−
ϕ

. (42) 

 
The strain equations εφφ and εθθ of eq. (8) can be recast to give the stresses σφφ and σθθ as a function of the strains εφφ 
and εθθ. These stresses can be integrated in the first two integrals of eq. (1) to yield Nφ and Nθ as a function of the 
middle surface strains 0

ϕϕε  and 0
θθε  (ref. 9) 

 

 [ ]o
00

2 )1(
1

hE
φN τ⋅α⋅ν+−ε⋅ν+ε⋅

ν−

⋅
= θθϕϕ   (43) 

 

 [ ]o
00

2 )1(
1

hEN τ⋅α⋅ν+−ε⋅ν+ε⋅
ν−

⋅
=θ ϕϕθθ .  (44) 

 
Equations (43) and (44) above can be recast to give 0

ϕϕε  and 0
θθε  as functions of Nφ and Nθ. These can then be 

used in eq. (42), along with eqs. (25) and (26) for Nφ and Nθ, respectively, to yield 
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 ⎥
⎦

⎤
⎢
⎣

⎡
ϕ⋅−

ϕ⋅
⋅ν+

=−⋅
⋅

ν+⋅
=ϕ⋅−

ϕ θϕ )cot(q
d
dq

E4
h)1()NN(

hE
)1(R)cot(v

d
dv .  (45) 

 
The differential equation above can be solved by assuming a general solution 
 

 ( ) ( )ϕ+ϕ⋅
⋅
⋅ν+

=ϕ fq
E4

h)1()(v   (46) 

 
where f(φ) represents the homogeneous solution portion of the general solution. The general solution above can be 
used in eq. (42) to yield 
 

 0)cot(f
d
df

=ϕ⋅−
ϕ

  (47) 

 
whose solution is 
 
 )sin(C)(f v ϕ⋅=ϕ .  (48) 
 
The general solution for v is, therefore 
 

 )sin(Cq
E4

h)1(v v ϕ⋅+⋅
⋅
⋅ν+

= .  (49) 

 
The solution for the displacement w can be found substituting eq. (49) for v back into the middle surface strain 

equation for 0
θθε of eq. (6). Using the equation for 0

θθε  as a function of Nφ and Nθ, along with eqs. (25) and (26) for 
Nφ and Nθ, respectively, it can be shown that 
 

 )cos(C)cot(q
d
dq

E4
hRw vo ϕ⋅−⎥

⎦

⎤
⎢
⎣

⎡
ϕ⋅+

ϕ
⋅

⋅
−τ⋅α⋅= .  (50) 

 
The constant Cv can be determined by noting that at φ = φe, v is given by equation (36). It can be shown that 

 

 
)sin(

)(q
E4

h)1()cos(r
C

e

eeo
v ϕ

ϕ⋅
⋅
⋅ν+

−ϕ⋅Δ
= .  (51) 

 
C.  Simplified Analytical Expression for the Displacement wo at the Spherical Dome Center 

The displacement w at the center of the spherical dome, or φ = 0, is of interest because this location experiences 
the largest displacement for a temperature distribution that monotonically decreases with increasing φ. The 
displacement can be simplified by noting that as φ approaches zero, q in equation (50) for w goes to zero. This is 
because the non-homogeneous solution of q in eq. (17) is zero since )1(P )1(

n =0 and the homogeneous solution of q in 
eq. (23) is negligibly small because it is multiplied by exp(–kφe), which is a small value for large ratios of radius of 
curvature to thickness. Furthermore, it can be shown that dq/dφ also becomes negligibly small as φ approaches zero. 
This is because the homogeneous solution of dq/dφ in eq. (29) is also negligibly small since it is also multiplied by 
exp(–kφe) and the non-homogeneous solution of dq/dφ in eq. (28) typically produces a negligibly small value near 
the center.  

These findings are not too surprising. The terms q and dq/dφ are directly proportional to σφφ and σθθ, 
respectively. One benefit of spherically-domed shells under thermal loads is that these stresses tend to decrease 
significantly near the center of the dome, as opposed to flat plates, whose stresses tend to increase under similar 
thermal loads. This is because the spherical domes have a preferential direction in which to thermally expand. 

So, the resulting displacement w at φ = 0 reduces to 
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 ( ) vo C0TRw −⋅α⋅≈ .  (52) 
 
The first term on the right hand side of the above equation represents the thermal expansion of a spherical shell of 
radius R, thermal expansion coefficient α, and temperature T at φ = 0. The second term (i.e., Cv) represents the 
effect of the boundary condition, given in eq. (51).  

The expression for Cv is complicated because it includes q(φe). It is, however, possible to simplify this 
expression. The homogeneous solution to q is given by combining eqs. (23) and (39) at φ = φe to give 
 

 ( ) ( )e2

2

e )tan(
Rh
kN8q ϕχ⋅ψ⋅
⋅

⋅⋅
=ϕ   (53) 

 
Using this, along with eq. (41) for ψ, the general solution to q(φe) becomes 
 

 
)cot(k

)(
hR

kN8
r
r

)(
h

ER4)cot()(q
d

)(qd

)(q)(q
e

e2

3

o

o
eoee

e

ee ϕ⋅ν−

ϕχ⋅
⋅

⋅⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−ϕτ⋅α⋅

⋅⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ⋅ν⋅ϕ−

ϕ
ϕ

−

+ϕ=ϕ . (54) 

 
Using eqs. (16), (17), and (28) in the above equation, it can be shown that 
 

( ) [ ] ( ) [ ][ ]
( )

[ ]

)cot(k

)cos(PA
13

kE2)cos(P1nn)cos(P)cot(kB
h
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r)(

h
ER4

)(q

e
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e

)1(
nn

2
ene

)1(
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e

o

o
eo

e
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ϕ⋅⋅
ν−⋅

⋅⋅
+ϕ⋅+⋅−ϕ⋅ϕ+⋅⋅⋅α⋅

+

ϕ⋅ν−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−ϕτ⋅α⋅

⋅⋅

=ϕ

∑
∞

=

(55) 

 
For thin shells, R/h is large when compared to n2 in the series summation, so eq. (20) for Δ reduces to 
 

 ( )
2

2

h
R112 ⎟
⎠
⎞

⎜
⎝
⎛⋅ν−⋅≈Δ   (56) 

 
so that eqs. (18) and (19) for An and Bn, respectively, reduce to 
 

 nn a
R2

hA ⋅
⋅

−≈   (57) 

 

 ( )[ ]

( )
n2

2
n aE

h
R16

1nn1B ⋅⋅

⎟
⎠
⎞

⎜
⎝
⎛⋅ν−⋅

⋅+⋅−ν−
≈ .  (58) 

 
These equations can now be used in eq. (55). It can be shown that the first term in the series summation of eq. (55) is 
always negligibly small compared to the second term. Equation (55), therefore, reduces to 
 

 
( )

[ ]

)cot(k

)cos(Pa
13

kE2
r
r
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h

ER4

)(q
e
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e

)1(
nn2o

o
eo
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=
.  (59) 
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But the series summation of the above equation is merely the temperature gradient of eq. (15). Using this with the 
temperature assumption of eq. (35) in the above equation yields 
 

 
( )

( )

)cot(k

d
dT

13

kE2
r
r

)(T
h

ER4

)(q
e

e
2o

o
e

e ϕ⋅ν−

ϕ
ϕ

⋅
ν−⋅

⋅⋅α⋅
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−ϕ⋅α⋅

⋅⋅

≈ϕ .  (60) 

 
With this simplified expression for q at φ = φe, eq. (60) can be used in eq. (51) for Cv to yield 
 

 ( ) ( )
( )

)cos()sin(k

d
dT

112
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r
r

)(TR)1(

cotrC
ee

e
2o

o
e
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ϕ
ϕ
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−⎟⎟

⎠

⎞
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⎝

⎛ Δ
−ϕ⋅α⋅⋅ν+

−ϕ⋅Δ≈ .  (61) 

 
Equations (52) and (61) define a simplified expression for the displacement of the center of the spherical dome 
requiring knowledge of material properties, geometry of the dome, temperatures at the center and edge, and the 
derivative of the temperature at the edge. As expected, the deflection of the dome center is a function of the 
material’s Poisson’s ratio but is independent the material elastic modulus. 
 
D. Solution Process for Thermally-Induced Moments, Stresses, and Displacements 

The process for solving for the thermally-induced displacements of the spherically domed shell, along with the 
stresses and moments, is presented below. The required inputs include shell material properties, geometry,  
and temperature distribution. Shell material properties include α, ν, and E. Shell geometry inputs include R, h, and 
φe. Often, however, only the dome height and chord radius are known. The radius of curvature can then be 
determined by 
 

 
dome

2
dome

2
o

h2
hr

R
⋅
+

=   (62) 

 
while φe is determined by 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ϕ

R
r

arcsin o
e .  (63) 

 
The temperature distribution must be some continuous mathematical function of φ. Finally, a value for Δro  
is required. 

The derivative of the temperature distribution, dT/dφ = dτo/dφ, is first determined. This result is used in eq. (21) 
to determine the values for an. Solutions to the spherical functions of the first kind, along with the Legendre 
functions, can be defined using known Legendre explicit expressions and recurrence relations for higher orders and 
degrees (ref. 13) The results for an, along with Δ from eq. (20), are used in eqs. (18) and (19) to determine values for 
An and Bn, respectively. These results are then used in eqs. (16), (17), (33), and (28) to determine the non-
homogeneous solutions of χ, q, dχ/dφ, and dq/dφ, respectively. The results of these four equations are used with the 
temperature at φ = φe to determine the constants ψ and C of eqs. (41) and (39), respectively. With these constants 
and eqs. (24) and (13) for k and N, respectively, the homogenous solutions to χ, q, dχ/dφ, and dq/dφ, in eqs. (22), 
(23), (34), and (29), respectively, can be determined. The general solutions of χ, q, dχ/dφ, and dq/dφ are, therefore, 
the sum of their respective non-homogeneous and homogeneous solutions. With these solutions, Qφ, Nθ and Nφ are 
determined with eqs. (10), (25), and (26), respectively. The moments Mφ and Mθ are determined with eqs. (30) and 
(31). The average stresses σφφ, σθθ, and σφz are merely the forces per unit length divided by the thickness, h. 

Regarding displacements, the constant Cv in eq. (51) is determined with the general solution of q. With this 
result and the general solution for q, the tangential displacement, v, is solved with eq. (49). The general solutions of 
q and dq/dφ of are used to determine the normal displacement, w, in eq. (50).  
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There are limitations to the solutions to Nθ, Nφ, Mφ, Mθ, and w. Specifically, the solutions to these equations 
produce a singularity at φ = 0, which is the geometric center of the spherical dome. This is due to the cot(φ) term in 
each equation. That the cot(φ) term was not properly accounted for in the solutions is an artifact of the assumption 
made for the homogeneous solutions of χ and q. However, solutions can be obtained in the immediate vicinity of  
φ = 0 and the results extrapolated to the dome center. 

The non-homogeneous solutions of χ and q in eqs. (16) and (17), respectively, and their derivatives include a 
series summation to infinity. These summations converge after some number of summations, so that some limiting 
value other than infinity can be used. To determine this value, it is important to understand that the non-
homogeneous solutions to the differential equations of eqs. (11) and (12) were found by assuming that the derivative 
of the temperature distribution across the spherical dome could be expressed by the series summation in eq. (15). 
The required number of summations is, therefore, the number of summations necessary for eq. (15) to accurately 
express the actual derivative of the temperature as a function of φ. For larger values of n, an becomes negligibly 
small to ensure a convergent solution. So the required number of summations can be determined by comparing the 
actual derivative of the temperature distribution with that of eq. (15).  

IV.  Effects of Shell Perforation  

Because ion optics are perforated, the effect of this perforation on the displacements must be included in the 
analytical model. Fortunately, determining the stresses and strains of perforated plates has been dealt with 
considerably in literature, examples of which are included in references 6, 14 to 17. The effects of plate perforation 
on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with 
modified, or effective, material properties. The effective material properties include the elastic modulus and the 
Poisson’s ratio (ref. 15). The resulting effective material properties are functions of the perforation pattern layout, 
aperture center-to-center spacing, and aperture diameter (ref. 14). With these effective material properties, 
displacements and nominal stresses are determined. The displacements in the actual perforated plate are the same as 
those of the equivalent solid plate utilizing effective material properties. Actual ligament stresses are determined by 
multiplying the nominal stresses with predetermined stress multipliers (ref. 14).  

While this process offers significant simplicity, a short-coming is that effective material properties can be a 
function of the type of load applied to the perforated plate. This is especially true for thinner plates with a high 
perforated open area fraction and where the ratio of the material thickness divided by the center-to-center aperture 
spacing is small (ref. 15). The resulting equivalent solid plate possesses effective material properties that are not 
isotropic, which violates a basic assumption used in developing theory of thermal displacements in thin-walled 
shells. A thermally-loaded spherically domed grid will have both in plane stresses (i.e., thermally-induced 
compressive and tensile loads in the plane of the perforation), and bending loads. Therefore, if effective elastic 
moduli and Poisson’s ratios vary with the type of load, this will introduce errors in determining displacements. 

Effective material properties that account for perforation can be determined theoretically (refs. 14 to 17) or via 
finite element modeling (ref. 6). The latter technique is labor-intensive and can be shown to produce results that are 
similar to those of the theoretical study of reference 14. The theoretical studies of references 14 to 17 demonstrated 
that the ratios of effective to actual E and ν are functions of the minimum webbing width divided by the center-to-
center aperture spacing for a given aperture layout. These studies also provided plots so that effective material 
properties could be readily determined for a given ratio of minimum webbing width to center-to-center  
aperture spacing. 

V.  Comparison of Analytical Model with Finite Element Model Results  

The analytical model above was compared to the results from the finite element model in reference 6 by Shunk. 
Comparisons were made to both solid and perforated spherical shells with varying geometric and material 
properties. This was done so that the efficacy of the analytical solution and the process for accounting for 
perforation could be investigated separately over a relatively broad range of material and geometric properties. 
Furthermore, comparisons were only made for displacements normal to the surface because only these data were 
available for comparisons. Regardless, some tangential displacements from the analytical model will be presented. 

Determining the efficacy of this analytical model by comparing it to a finite element model was done for three 
reasons. First, comparisons were direct because inputs such as boundary conditions and temperature distributions 
could be exactly matched (i.e., both used fixed edge supports). Second, comparisons could be made throughout the 
spherical dome because these data could be easily determined from the finite element model. Finally, measured data 
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with similar boundary conditions and free of other factors that could obfuscate comparisons could not be found by 
this author.  

 
A. Solid Shell Normal Displacements 

The finite element model in reference 6 was used to calculate the thermally-induced displacements normal  
to the spherical surface, w, as a function of chord radius for three different materials (i.e., 304 stainless steel, 
titanium, and molybdenum) and for two different chord radii (i.e., 50 and 75 cm). Although the aforementioned 
analytical model yields results as a function of φ, this variable can be converted to a chord radial dimension with the 
following relation 
 
 )sin(Rr ϕ⋅= .  (64) 
 
For this comparison, the spherical domes were assumed to be solid, and not perforated. Material properties are listed 
in table 1. The screen grid thicknesses of table 2 were used. Geometric properties of the screen grid spherical domes 
listed in table 3 were used. The temperature distribution used here was that developed in reference 6. The 
temperature as a function of chord radius was a second order quadratic expression 

 
 )(sinRA)sin(RAA)(T 22

2T1T0T ϕ⋅⋅+ϕ⋅⋅+=ϕ .  (65) 
 
The constants used in the above temperature equation are those for the screen grids listed in table 4. Finally, the 
boundary condition in reference 6 was a clamped edge with no chord expansion, so that Δro was equal to zero in the 
analytical model. 

The normal displacements from the analytical and finite element models are shown in figures 3 and 4 for the 50 
and 75 cm chord radii, respectively. As the figures show, there is excellent agreement between the finite element 
model of reference 6 and the analytical model of this study. Table 5 compares the simplified analytical solution of 
eqs. (52) and (61) for wo to the finite element model results from reference 6 at the center of the solid spherical 
dome. The comparisons were excellent, with the worst-case difference being < 4 percent. 

 
B. Perforated Shell Normal and Tangential Displacements 

For the perforated material, only the 50 cm chord diameter was examined. Two aperture diameters were 
examined, and these were labeled screen and accelerator grid. The screen and accelerator grid aperture diameters 
were 0.899 and 0.399 cm, respectively, with an aperture center-to-center spacing of 0.953 cm for both. The same 
three materials as the prior section were examined. Effective material properties due to shell perforation under a 
plane stress load were determined from reference 14 and are listed in table 6. The grid thicknesses of table 2 were 
used. Geometric properties of the spherical domes are listed in table 3 for the 50 cm chord diameter. The constants 
used in the temperature equation are listed in table 4 for the 50 cm screen and accelerator grids. The equivalent finite 
element model results for the perforated grids were taken from Shunk, who modeled a spherical shell with apertures 
(ref. 6). Because of symmetry, Shunk modeled a perforated quarter section of the domed spherical grid using 
appropriate boundary conditions.  

The normal displacements from the analytical and finite element models are shown in figures 5 and 6 for the 
screen and accelerator grids, respectively. Table 7 compares the simplified analytical solution of eqs. (52) and (61) 
for wo to the finite element model results from reference 6 at the center of the perforated dome. As the figures and 
table show, there was good agreement between the analytical and finite element models for the titanium and 
molybdenum materials. The stainless steel material produced poorer comparisons, however.  

Tangential displacements using the analytical model were determined for the perforated molybdenum and 
titanium grids. These tangential displacements are shown in figure 7 for both grids. Tangential displacements at the 
center and edge were both zero due to symmetry and setting Δro = 0, respectively.  
 
C. Discussion of Results 

For the solid shell results, normal displacement comparisons showed that the analytical model produced results 
that closely matched the finite element model of reference 6. This is not surprising because the assumptions used 
developing the above equations for thermally-induced shell displacements were the same as those commonly used 
for thin-walled shells of revolution (ref. 11). The simplified equation for the normal displacement of the spherical 
dome center was also found to accurately predict the displacement in this location, demonstrating that the simplified 
equation for wo can be an accurate predictive tool. 
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Perforated shell normal displacement comparisons demonstrated that the use of effective material properties can 
produce inaccurate results in some cases, under-predicting the displacements at and near the grid center. It is 
speculated the discrepancies were likely the result of the steel’s material properties and the use of effective material 
properties that can vary with load type. Reference 15 showed that a perforated plate with ratios of the material 
thickness divided by the center-to-center aperture spacing similar to all of those of this study should produce 
effective material properties that are a function of load type. It can be shown that the moments of eqs. (30) and (31) 
are directly proportional to 

 

 θ∝
⋅⋅α

∝ M
R

hE
φM

3
.  (66) 

 
Because these moments produce bending loads, the steel screen grid would experience the highest bending loads 
because it had the highest thermal expansion coefficient, the second highest elastic modulus, and the highest 
thicknesses. As a result, the stainless steel produced poor comparisons to the finite element model. 

The analytical model results for normal displacements still produced accurate results for the titanium and 
molybdenum materials, likely due to their lower thermal expansion coefficients. Table 7 shows that the simplified 
equation for wo yielded results that were within 3 percent of the results from the finite element model. Because most 
grid materials are either molybdenum or some other material with a low thermal expansion, this analytical approach 
should produce accurate results for these materials. 

The analytical model results for tangential displacements showed that tangential displacements were 
significantly smaller than normal displacements. While it is likely the case that normal displacements will always be 
greater that tangential movement, the significantly small values in figure 7 were due, in part, to setting Δro = 0. A 
larger value for Δro would have caused larger tangential displacements. 

From the aforementioned perforated plate results, changes in grid gap and grid-to-grid aperture alignment can 
be easily determined. At a given location r, grid gap and grid-to-grid aperture alignment changes are merely the 
difference of the normal and tangential displacements, respectively, of each grid. 

VI. Conclusions 

An analytical method for calculating the thermally-induced normal and tangential displacements of spherically 
domed grids was described. The theory for thin-walled shells of revolution under thermal loads varying both through 
the thickness and along surface was reviewed. Only spherical shells of uniform thickness and under an axisymmetric 
thermal loading were considered. A fixed edge support was used for this analysis. To make the analysis results more 
applicable, it was further assumed that the edge support could be thermally expanded.  

Displacements both normal and tangential to the surface of the spherical shell were derived. A simplified 
equation for the displacement at the center of the spherical dome was also derived. This simplified expression for the 
displacement only requires knowledge of material properties, geometry of the spherical dome, temperatures at the 
center and edge, and the derivative of the temperature at the edge of the dome.  

The effects of plate perforation on displacements and stresses were determined by modeling the perforated plate 
as an equivalent solid plate with modified, or effective, material properties. The effective material properties 
included the elastic modulus and Poisson’s ratio. The resulting effective material properties are functions of the 
perforation pattern layout, aperture center-to-center spacing, and aperture diameter. The displacements in the actual 
perforated plate are the same as those of the equivalent solid plate utilizing effective material properties. 

The analytical model was compared to the results from a finite element model for displacements normal to the 
surface. For the solid shell results, comparisons showed that the analytical model produced results that closely 
matched the finite element model results. The simplified equation for the normal displacement of the spherical dome 
center was also found to accurately predict the displacement in this location. For perforated shells, the analytical 
solution and simplified equation produced accurate results for the titanium and molybdenum materials, likely due to 
their lower thermal expansion coefficients. Because most grid materials are either molybdenum or some other 
material with a low thermal expansion, this analytical approach should produce accurate results for these materials. 

The results from this study demonstrated that this analytical model can accurately predict grid displacements 
and can, therefore, be used as a predictive tool. The analytical equations presented in this study are further useful 
because they provide the relevant geometric and material parameters and their impact on grid displacements.  
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TABLE 1.—SPHERICAL DOME MATERIAL  
PROPERTIES AND THICKNESSES FROM REF. 6 

Material E,  
GPa 

ν α,  
m/m·°C 

304 stainless steel 193  0.3 17.8×10–6 

Titanium 100  0.33 9.5×10–6 
Molybdenum 300  0.3 5.43×10–6 

 
 

TABLE 2.—SPHERICAL DOME THICKNESSES FROM REF. 6 

Material Screen h,  
cm 

Accelerator h,  
cm  

304 stainless steel 0.300 0.396 
Titanium 0.152 0.203 

Molybdenum 0.152 0.396 
 
 

TABLE 3.—SPHERICAL DOME GEOMETRIES FROM REF. 6 

Chord diameter R,  
cm 

φe 

50 cm 85.75 16.95° 
75 cm 128.62 16.95° 

 
 

TABLE 4.—TEMPERATURE DISTRIBUTION CONSTANTS FROM REF. 6 

Chord diameter and grid AT0 AT1 AT2 

50 cm screen –0.095 –0.636 283.3 
50 cm accelerator –0.096 –0.356 237.3 

75 cm screen –0.042 –0.423 283.4 
 
 

TABLE 5.—COMPARISON OF SIMPLIFIED SOLUTION wo TO SOLID  
SHELL FINITE ELEMENT MODEL RESULTS FROM REF. 6 

50 cm chord radius 75 cm chord radius 
Material FEM,  

cm 
Analytical, 

cm 
Error,  

% 
FEM,  

cm 
Analytical, 

cm 
Error,  

% 
304 stainless steel 0.504 0.504  0.2 0.723 0.735 1.7 

Titanium 0.259 0.258  –0.3 0.376 0.379 0.9 
Molybdenum 0.145 0.147  1.6 0.210 0.216 3.2 

 
 

TABLE 6.—PERFORATED SPHERICAL DOME EFFECTIVE MATERIAL PROPERTIES 
Screen grid Accelerator grid 

Material E,  
GPa 

ν E,  
GPa 

ν 

304 stainless steel 5.02 0.795  124 0.315 
Titanium 2.60 0.795  64.1 0.334 

Molybdenum 7.80 0.795  192 0.315 
 
 

TABLE 7.—COMPARISON OF SIMPLIFIED SOLUTION wo TO PERFORATED  
SHELL FINITE ELEMENT MODEL RESULTS FROM REF. 6 

Screen grid Accelerator grid 
Material FEM,  

cm 
Analytical, 

cm 
Error,  

% 
FEM,  

cm 
Analytical, 

cm 
Error,  

% 
304 stainless steel 0.655 0.573  –12.5 0.447 0.432 –3.47 

Titanium 0.289 0.281  –2.77 0.221 0.219 –0.90 
Molybdenum 0.165 0.161  –2.42 0.136 0.132 –2.94 
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Figure 1.—Element of a spherical shell with the resultant forces and moments per unit length  
from an axisymmetric thermal load. Radius of curvature and resultant forces  

and moments are to the element middle surface. 
 
 
 
 
 
 
 
 

 
 

Figure 2.—Illustration of the boundary conditions used in this study for a spherically domed grid. 
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Figure 3.—Solid spherical dome displacements normal to the surface as a function of chord  

radius for the 50 cm chord diameter dome. Finite element model (FEM)  
results are from reference 6. 
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Figure 4.—Solid spherical dome displacements normal to the surface as a function of chord  

radius for the 75 cm chord diameter dome. Finite element model results are from reference 6. 
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Figure 5.—Perforated spherical dome displacements normal to the surface as a function of  

chord radius for the 50 cm chord diameter screen grid. Finite element  
model results are from reference 6. 
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Figure 6.—Perforated spherical dome displacements normal to the surface as a function  

of chord radius for the 50 cm chord diameter accelerator grid. Finite element  
model results are from reference 6. 
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Figure 7.—Perforated spherical dome displacements tangential to the surface as a  

function of chord radius for the 50 cm chord diameter screen and accelerator grids.  
 



This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved
OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

Available electronically at http://gltrs.grc.nasa.gov

March 2006

NASA TM—2006-214046
IEPC–2005–248

E–15403

WBS–22–612–50–04–19

26

Calculation of Thermally-Induced Displacements in Spherically Domed
Ion Engine Grids

George C. Soulas

Ion thruster; Ion engine; Ion propulsion; Mechanical engineering

Unclassified -Unlimited
Subject Categories: 20 and 37

Prepared for the 29th International Electric Propulsion Conference cosponsored by ERPS, Princeton University, NASA
Glenn, NASA Jet Propulsion Laboratory, Aerojet, EPPDYL, IEPC, Busek, and Mitsubishi Electric, Princeton, New
Jersey, October 31–November 4, 2005. Responsible person, George C. Soulas, organization code RPP, 216–977–7419.

An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed
ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally
expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the
spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived.
The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an
equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the
results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results
that closely match the finite element model results. The simplified equation for the normal displacement of the spherical
dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and
simplified equation produce accurate results for materials with low thermal expansion coefficients.







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Generic CMYK Profile)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AbadiMT-CondensedExtraBold
    /AbadiMT-CondensedLight
    /AndaleMono
    /Apple-Chancery
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BernardMT-Condensed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /Braggadocio
    /BritannicBold
    /BrushScriptMT
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /CapitalsRegular
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Charcoal
    /Chicago
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Courier
    /Courier-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /Desdemona
    /EdwardianScriptITC
    /EngraversMT
    /EngraversMT-Bold
    /EurostileBold
    /EurostileRegular
    /FootlightMTLight
    /GadgetRegular
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Garamond-UltraCondensed
    /Garamond-UltraCondensedItalic
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GillSans-UltraBold
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /Gulim
    /Haettenschweiler
    /Harrington
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Light
    /HelveticaNeue-LightItalic
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumItalic
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Impact
    /ImprintMT-Shadow
    /KinoMT
    /LatinWide
    /LucidaBlackletter
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MaturaMTScriptCapitals
    /Mistral
    /Modern-Regular
    /Monaco
    /MonotypeCorsiva
    /MonotypeSorts
    /NewYork
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NuptialScript
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /Onyx
    /PMingLiU
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /SandRegular
    /SimSun
    /Skia-Regular
    /Stencil
    /Symbol
    /Tahoma
    /Tahoma-Bold
    /TechnoRegular
    /TextileRegular
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings
    /Wingdings2
    /Wingdings3
    /WoodtypeOrnaments-One
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


